@article {11_TAP_CorcolesRubio_SphericalSynthesis,
title = {Spherical-Wave-Based Shaped-Beam Field Synthesis for Planar Arrays Including the Mutual Coupling Effects},
journal = {IEEE Transactions on Antennas and Propagation},
volume = {59},
number = {8},
year = {2011},
month = {Aug},
pages = {2872-2881},
abstract = {An analytical method to synthesize shaped-beam patterns with planar arrays, based on the handling of spherical waves, is proposed. Translational Addition Theorems will be used here for two different purposes: (1) relating the spherical modes produced by each element in the array to calculate the mutual coupling effects, and (2) expressing the field radiated by each element in terms of spherical modes corresponding to the whole array, to carry out a spherical-wave synthesis procedure based on the orthogonal properties of spherical modes. This field synthesis method is based on the fact that any antenna radiated field can be expressed as a discrete series of weighted spherical vector wave functions and it only requires the a priori knowledge of the Generalized Scattering Matrix of each array element considered as isolated from the rest of the array elements.},
keywords = {antenna feeds, antenna radiated field, antenna radiation patterns, Arrays, electromagnetic coupling, electromagnetic wave scattering, field synthesis method, generalized scattering matrix, GSM, Mutual coupling, mutual coupling effect, pattern field synthesis, planar antenna arrays, planar array, planar array element, Planar arrays, S-matrix theory, Scattering, spherical wave expansion, spherical-wave synthesis procedure, spherical-wave-based shaped-beam field synthesis, translational addition theorem, translational addition theorems, weighted spherical vector wave function},
issn = {0018-926X},
doi = {10.1109/TAP.2011.2158950},
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5871276},
author = {J C{\'o}rcoles and Rubio, J and Gonz{\'a}lez, M A}
}
@article {09_TAP_Corcoles_FourierSynthesis,
title = {Fourier Synthesis of Linear Arrays Based on the Generalized Scattering Matrix and Spherical Modes},
journal = {IEEE Transactions on Antennas and Propagation},
volume = {57},
number = {7},
year = {2009},
month = {July},
pages = {1944-1951},
abstract = {This paper presents a novel, simple pattern synthesis procedure for linear equispaced arrays which can be characterized by a generalized scattering matrix (GSM) and whose radiated field can be expressed as a weighted sum of shifted spherical waves. It can be viewed as an extension of the classic design techniques of the Fourier series (FS) method or the Woodward-Lawson frequency sampling method, to the case in which the individual antenna elements{\textquoteright} patterns and all interelement couplings are taken into account. The design procedure, which yields the excitations needed to achieve the desired pattern, is based on either the FS or the discrete Fourier transform (DFT) of the spherical mode expansion of the array radiated field, as well as on various properties associated to the FS or DFT coefficients. In this work, to compute the GSM of the array and the spherical mode expansion of the field, a validated hybrid full-wave methodology, based on the finite element method and rotation and translation properties of spherical waves, is used. Numerical results of different synthesized array patterns are presented for different arrays made up of dielectric resonator antennas and cavity-backed microstrip circular patches.},
keywords = {Antenna array mutual coupling, cavity-backed microstrip circular patches, dielectric resonator antennas, discrete Fourier transform, discrete Fourier transforms, discrete Fourier transforms (DFT), finite element analysis, finite element method, finite element methods, Fourier series, Fourier synthesis, Frequency, generalized scattering matrix, GSM, interelement couplings, linear antenna arrays, linear arrays, linear equispaced arrays, microstrip antenna arrays, Microstrip antennas, pattern synthesis, S-matrix theory, Sampling methods, Scattering, scattering matrices, shifted spherical waves, signal sampling, spherical mode expansion, spherical modes, Transmission line matrix methods, Woodward-Lawson frequency sampling},
issn = {0018-926X},
doi = {10.1109/TAP.2009.2021929},
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=4907114},
author = {J C{\'o}rcoles and Gonz{\'a}lez, M A and Rubio, J}
}