@article {05_IEEETMTT_Ruiz-CruzSabbaghZakiEtAl_Canonicalridgewaveguide, title = {Canonical ridge waveguide filters in LTCC or metallic resonators}, journal = {IEEE Transactions on Microwave Theory and Techniques}, volume = {53}, number = {1}, year = {2005}, month = {Jan.}, pages = {174-182}, abstract = {A new physical realization of an elliptic function filter response is proposed for achieving compact size, wide bandwidth, wide spurious free stopband and high-selectivity performance. The filter configuration can be implemented in conventional waveguide technology or embedded in a multilayer low-temperature co-fired ceramic structure for integration with other circuitry in a chip module. The filter is analyzed using rigorous mode matching. To validate the concept, prototypes of four- and six-cavity elliptic filters are designed following a systematic procedure. Approximate synthesis is used to obtain initial dimensions of the filter and the desired optimum response is obtained by means of a final full-wave optimization. The results are verified with other numerical methods and with the measurements of a fourth-order waveguide filter.}, keywords = {band-pass filters, canonical ridge waveguide filters, cavity resonator filters, ceramics, chip module, circuit optimisation, elliptic filters, elliptic function filter response, four cavity elliptic filters design, fourth order waveguide filter, full-wave optimization, metallic resonators, microwave filters, mode matching, multilayer low temperature cofired ceramic structure, multilayers, numerical methods, prototypes, resonators, ridge waveguides, six cavity elliptic filters design, spurious free stopband filter, waveguide filters band pass filters, waveguide technology}, issn = {0018-9480}, doi = {10.1109/TMTT.2004.839324}, url = {http://ieeexplore.ieee.org/iel5/22/30125/01381687.pdf?tp=\&arnumber=1381687\&isnumber=30125}, author = {J A Ruiz-Cruz and El Sabbagh, M A and Zaki, K A and Rebollar, J M and Zhang, Y} }