@article {20_EDUARDO_MONOPULSE_DIFUSSION, title = {Diffusion-bonded W-band monopulse array antenna for space debris radar}, journal = {AEU - International Journal of Electronics and Communications}, volume = {116}, year = {2020}, pages = {153061}, abstract = {In this letter, the design and fabrication of a W-band high-gain monopulse array antenna are presented. The antenna is conceived as a proof of concept for a space debris detection project to develop an on-board radar for a satellite system. The antenna array consists of 16 by 16 circularly polarized radiating cavities fed by a corporate waveguide network with an amplitude taper. An underlying monopulse beamforming network is implemented in waveguide technology as well, providing monopulse capability in both main radiating planes. By means of diffusion bonding, the antenna has been fabricated in a single piece, despite its intricate, multilayer topology. Moreover, the experimental performance shows high agreement with simulations, which is remarkable due to the high sensitivity to manufacturing tolerances at this frequency. Over a 10\% bandwidth is experimentally achieved for efficiency over a 75\%, axial ratio under 3~dB and impedance matching under -10~dB.}, keywords = {millimeter wave technology, Planar arrays, radar antennas}, issn = {1434-8411}, doi = {https://doi.org/10.1016/j.aeue.2019.153061}, url = {http://www.sciencedirect.com/science/article/pii/S1434841119320436}, author = {E Garcia-Marin and J L Masa-Campos and P Sanchez-Olivares} }