@article {15_TAP_Rubio_ThinningOMP, title = {Array Thinning of Coupled Antennas Based on the Orthogonal Matching Pursuit Method and a Spherical-Wave Expansion for Far-Field Synthesis}, journal = {Antennas and Propagation, IEEE Transactions on}, volume = {63}, number = {12}, year = {2015}, month = {Dec}, pages = {5425-5432}, abstract = {This work is focused on the array thinning problem in shaped beam far-field synthesis. The orthogonal matching pursuit algorithm, which allows finding sparse solutions in linear systems, is combined with a fast full-wave analysis method for antenna arrays based on a spherical wave expansion, thereby taking mutual coupling between real antennas into account in the thinning process. To this aim, the original iterative algorithm is modified so that the current residual is obtained for the selected real coupled antennas in each step of the algorithm. In this way, the remaining nonselected elements are effectively removed instead of turned off. Results for arrays made up of microstrip patch antennas and dielectric resonator antennas arranged in triangular and rectangular lattices are presented.}, keywords = {Antenna arrays, array thinning problem, Arrays, coupled antennas, dielectric resonator antennas, far-field synthesis, fast full-wave analysis method, generalized scattering matrix, iterative algorithm, iterative methods, Layout, linear systems, Matching pursuit algorithms, microstrip antenna arrays, microstrip patch antennas, Mutual coupling, orthogonal matching pursuit method, pattern field synthesis, planar array, rectangular lattices, spherical wave expansion, spherical-wave expansion, translational addition theorems, Transmission line matrix methods, triangular lattices}, issn = {0018-926X}, doi = {10.1109/TAP.2015.2487506}, author = {J Rubio and J C{\'o}rcoles and J F Izquierdo and R G{\'o}mez-Alcal{\'a}} } @article {11_TAP_CorcolesRubio_SphericalSynthesis, title = {Spherical-Wave-Based Shaped-Beam Field Synthesis for Planar Arrays Including the Mutual Coupling Effects}, journal = {IEEE Transactions on Antennas and Propagation}, volume = {59}, number = {8}, year = {2011}, month = {Aug}, pages = {2872-2881}, abstract = {An analytical method to synthesize shaped-beam patterns with planar arrays, based on the handling of spherical waves, is proposed. Translational Addition Theorems will be used here for two different purposes: (1) relating the spherical modes produced by each element in the array to calculate the mutual coupling effects, and (2) expressing the field radiated by each element in terms of spherical modes corresponding to the whole array, to carry out a spherical-wave synthesis procedure based on the orthogonal properties of spherical modes. This field synthesis method is based on the fact that any antenna radiated field can be expressed as a discrete series of weighted spherical vector wave functions and it only requires the a priori knowledge of the Generalized Scattering Matrix of each array element considered as isolated from the rest of the array elements.}, keywords = {antenna feeds, antenna radiated field, antenna radiation patterns, Arrays, electromagnetic coupling, electromagnetic wave scattering, field synthesis method, generalized scattering matrix, GSM, Mutual coupling, mutual coupling effect, pattern field synthesis, planar antenna arrays, planar array, planar array element, Planar arrays, S-matrix theory, Scattering, spherical wave expansion, spherical-wave synthesis procedure, spherical-wave-based shaped-beam field synthesis, translational addition theorem, translational addition theorems, weighted spherical vector wave function}, issn = {0018-926X}, doi = {10.1109/TAP.2011.2158950}, url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5871276}, author = {J C{\'o}rcoles and Rubio, J and Gonz{\'a}lez, M A} } @article {10_GEODAMOTL, title = {Triangular planar array of a pyramidal adaptive antenna for satellite communications at 1.7 GHz}, journal = {Microwave and Optical Technology Letters}, volume = {51}, number = {11}, year = {2009}, month = {Nov.}, pages = {2633 - 2639}, abstract = {Nowadays, satellite communications are basic for the human lifestyle. In this way, a smart, conformal, and multiarray antenna (GEODA) is being developed in order to receive signals from several satellites simultaneously in the 1.7 GHz working band. An adaptive beam system is able to follow the signals from the satellite constellation. The complex structure of the antenna is based in a 3D composition of planar arrays with triangular shape. These arrays are divided into subarrays of three patches (Cells), composing the single control element for the arrays main beam direction management. Fifteen cells (45 radiating elements) compose each triangular array of the GEODA antenna. In this article, a triangular array prototype is implemented and measured. Likewise, an individual characterization of the array components is presented.}, keywords = {adaptive antenna, branch-line coupler, double stacked patch, planar array}, issn = {0895-2477}, doi = {10.1002/mop.24692}, url = {http://onlinelibrary.wiley.com/doi/10.1002/mop.24692/abstract}, author = {J L Masa-Campos and Montesinos-Ortego, I and Sierra-P{\'e}rez, M} }